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Abstract:  
The relevance of this study is immense for India. The Indian economy largely depends on agriculture, 
which is impacted by weather extremes and variability in monsoon. India is more vulnerable to 
disruption from drought than countries like the United States. While agriculture accounts for just 16 

, half of its 1.3 billion people work on farms, thus, making agriculture the 

with nearly 1 billion Indian people reliant on it as their major food source. Most important constraint 
to rice production is water stress which affects nearly ~40 million ha of rainfed system from the total 
~45 million ha area under rice cultivation. Future climate change effects on rainfall timing and amount, 
and projected increases in temperature are expected to exacerbate existing water stresses and will have 
a direct impact on agriculture in India, especially rice cultivation. We have developed an integrated 
system that is successfully implemented in many countries. The integrated system RHEAS (Regional 
Hydrological Extreme and Assessment System) coupled with M-DSSAT (modified DSSAT crop 
model) ingests various NASA Earth science data to produce a set of relevant hydrologic products (e.g., 
drought indices, water excess/stress information) and rice yields nowcasts (current conditions), 
forecasts, and seasonal projections, and then feed them into the operational agency. The overarching 
goal of this study is to provide this integrated system to stakeholder to improve decision-making 
process and mitigate the plights of rice farmers and prepare the country to deal with ground realities 
based on the forecast of rice production. 
 
Introduction:  
Indian economy largely depends on agriculture, which is impacted by weather extremes and variability 
in monsoon. India is more vulnerable to disruption from drought than countries like the United States. 

on farms, thus, making agriculture the 
backbone of the Indian economy. However, 

food crop with nearly 1 billion Indian people 
reliant on it as their major food source. Most 
important constraint to rice production is 
water stress which affects nearly ~40 million 
ha of rainfed system from the total ~45 
million ha area under rice cultivation [1]. As 

illustrated in Fig. 1, future climate change effects on rainfall timing and amount, and projected 
increases in temperature are expected to exacerbate existing water stresses and will have a direct impact 
on agriculture in India [2], especially rice cultivation. India is also a major producer (second largest 
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rice producer) and an important player in the global agriculture market, and with the integration of the 
world economies it is of strategic interest for the world to have an optimal forecast and assessment of 
agricultural production in India.  
Understanding the significance and urgency of the situation, a physically-based, integrated hydrologic 
and crop modeling framework is essential that is at advanced Application Readiness Level. The 
integrated hydrologic and crop modeling framework will ingest the best available NASA Earth science 
remotely sensed data products (e.g., SMAP, GPM IMERG, CHIRPS, TMPA, MODIS LAI/FPAR) to 
produce a set of relevant hydrologic variables (e.g., various drought indices, water excess/stress 
information) and crop yields nowcasts (current conditions), forecasts, and seasonal projections, and 
then feed them to the operational agency. These vital information is then will be useful for: i) 
assessment, early warning, and risks for agricultural droughts and outlooks of agricultural water 
demands in the rice cultivated regions of India; and ii) rice crop monitoring, seasonal yield forecasting, 
and final yield estimation. These critical information enable the stakeholders and policy-makers at the 
federal- and state-level to: i) delineate drought-prone and drought-affected regions; ii) make crucial 
decisions in advance on distribution of drought-resistant seeds to the farmers of affected regions; (iii) 
providing subsidies for fertilizers and seeds; and (iv) distribution of monetary relief (insurance) to 
farmers in case of crop loss due to water stress and drought situations.  
Narrative: The changing climate and monsoon patterns in India have become a major concern for 
farmers, scientists, and policy-makers [3, 4, and 5]. For instance, researchers at the India 
Meteorological Department (IMD)-Pune, which handles long-range climate forecasts, have concluded 
that the June-September monsoon is increasingly becoming more sluggish in its initial phase, then 
picking up pace towards the end of the season [7, 8, and 9]. For a good harvest, the monsoon must not 
only be timely but also evenly distributed across the vast regions of the food-bowl states of India. 
Given current farming practices, a good knowledge of upcoming geophysical events (e.g., expected 
rainfall, drought outlooks) for June and July is vital, as during that period farmers sow a variety of 
crops, such as rice, maize, and pulses. Uncertainties in seasonal climate forecast and occurrence of 

agriculture sector towards a tipping point and it must now be prepared to face the challenges by 
upgrading existing systems and tools to keep feeding a billion-plus population. Therefore, it is crucial 
to have a reliable and comprehensive forecasting model that uses cutting edge tools, physically-based 
models and reliable satellite-based remote sensing data to provide a skillful forecast of water stress and 
seasonal (1 to 3 months in advance) crop yield estimates.  
The current system (FASAL from ISRO) lacks seasonal crop and drought forecasting component, and 
this limitations stems from unavailability of an integrated physically-based hydrologic and crop 
modeling framework with forecasting capability. We propose a physically-based, integrated 
hydrologic and crop modeling framework that essentially factor in all major influencing attributes for 
modeling seasonal rice yield forecast and estimation, and related drought status. The integrated model 
extends flexibility to run scenarios to optimize the rice yield and broadcast advisories to farmers. The 
integrated framework enables key information to decision-makers to take effective measures to deal 
with the impending situation to optimize crop yield and protect farmers.  
Based on these contexts, this study advances the use of satellite observations and hydrologic modeling 
to monitor and assess local and regional water quantity for improving risk assessment, economic 
planning, investment planning, and policy making. Therefore, a physically-based coupled hydrologic 
and crop model named as the Regional Hydrologic Extremes Assessment System (RHEAS) [10] 
coupled with the Modified-DSSAT (M-DSSAT) [11], as shown in Fig. 2 for nowcasts and forecasts 
using the best available ground- and satellite-based information for the rice producing regions of India 
is implemented. The RHEAS and M-DSSAT software architecture and its major components are coded 



 
Copyright 2019. All rights reserved. 

 

in Python and the model outputs are stored in a GIS-enabled relational database (PostGIS). The design 
choice has several advantages: (i) system modularity since any model added to RHEAS needs to only 
interface with the database and not any other model internal formats; (ii) GIS functionality that allows 
spatial operations, complex queries and analytics; (iii) the ability to serve data through well-established 
web technologies. The design allows seamless coupling of the core hydrologic model with other 

output in a PostGIS database. The datasets that are not produced by the RHEAS models, including 
satellite observations are automatically fetched and ingested into the PostGIS database. 
The logic of integrating the hydrologic model (HM) in RHEAS and crop model (CSM) in M-DSSAT 
is to capture the whole gamut of hydrological processes and the full extent of process dynamics 
involved in the soil-plant-atmosphere continuum. Figure 2 illustrates a simplified flow diagram of the 
integrated framework. We selected a widely-used HM, the Variable Infiltration Capacity (VIC) (Liang 
et al., 1994) model, and for the crop model, we selected a widely used CSM, the Decision Support 
System for Agrotechnology Transfer  Cropping System Model (DSSAT) [11]. They both are 
physically-based models and can run in nowcast and forecast modes. 

 
Hydrologic Modeling: The 
VIC model is a large-scale, 
semi-distributed hydrologic 
model that solves the full water 
and energy balances of a study 
domain under consideration. 
VIC allows the estimation of a 
multitude of hydrologic 
variables and a suite of water 
availability indicators that 
encompass the variability and 
characteristics of the entire 
water cycle. These variables 
and indicators are constrained 
by satellite and in situ 
observations of the 
hydrological cycle: 
precipitation, snow (if needed), 

ET, soil moisture, groundwater, and runoff. Figure 3 and Fig. 4 show the current capability of the the 
RHEAS and M-DSSAT framework. 

 
Figure 3: Capability of RHEAS framework, example from operational system in theEast Africa region, 
the figure shows nowcasts of hydrologic outputs of the RHEAS system.  



 
Copyright 2019. All rights reserved. 

 

 
Figure 4: Operational RHEAS system from 
the Southeast Asia Hub, nowcasts of 
hydrologic output (SMDI) of the RHEAS 
system. The web-based system is operational. 
The online portal is available at 
https://rdcyis-servir.adpc.net.  
 
 
The minimum input requirements for VIC 
include precipitation, air temperature and 
wind speed, which can either be provided by 
the satellite data products (if available) or 

reanalysis from the National Center for Environmental Prediction (NCEP) datasets [12]. The temporal 
resolution of VIC will be daily since droughts are relatively persistent events that require daily 
precipitation to be captured by a hydrologic model. ET and soil moisture are prognostic variables in 
VIC, but can be corrected using the satellite observations and an optimal estimation technique. The 
spatial resolution of the model simulation for this project will be 5 and 25 km, and is primarily governed 
by the available precipitation products.  
 
Crop Modeling: In the integrated system, RHEAS output (obtained from assimilating remote sensing 
observations) from VIC is used to initialize the surface boundary conditions and root-zone profiles of 
the crop model, i.e., Modified-DSSAT (M-DSSAT). The coupled M-DSSAT is also linked with an 
Ensemble Kalman Filter (EnKF) to assimilate profile soil moisture (from VIC) and vegetation related 
attributes (e.g., MODIS LAI), as illustrated in Fig. 5. The VIC and the M-DSSAT in the modeling 
framework (Fig. 2) use the same forcings. (NOTE: The original DSSAT model is modified to become 
M-DSSAT that accommodate EnKF with 50 ensemble members)  
 

 
Figure 5: M-DSSAT crop model of the RHEAS framework. It is capable of 50 ensembles (E in the 
figure), optimal to capture the variability in agricultural system within an administrative unit [13].  
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The integ -DSSAT) simulates growth, development, 
and yield of a crop, under given management practices, weather and environmental conditions, e.g., 
soil fertility, soil water holding capacity, etc. The crop model is equipped with its own soil hydrology 

yield. Ensembles are made in the M-DSSAT that capture the variability in the agricultural system due 
to various model parameters, soil profile, uncertainty in planting dates, fertilizer application and 
different types of seeds (cultivars). Crop models are generally designed to run continuously from 
sowing until maturity and harvest. Therefore, it is expected that by moving towards harvest season, the 
history of crop growth captured by model helps the M-DSSAT to produce a more realistic crop yield 
forecast than what could otherwise be obtained by just using model-based forcing from seasonal 
climate forecast. It should be noted that to incorporate M-DSSAT in the integrated framework, we 
have customized to stop on any given day to facilitate data assimilation (EnKF) when desired and 
restarts from that point in time [13]. As illustrated in Fig 5, the M-DSSAT of the integrated system is 
also implemented for the East Africa region and the Southeast Asia. Table 1 provides a list of datasets 
that are used to obtain the products shown above (Figures 3, 4, and 6). For the proposed work, We plan 
to use the similar inputs of NASA remote sensing observations and geophysical data. These datasets 
are most advanced and optimally accurate with thorough quality control. Ingestion as inputs to the 
integrated framework will add significant value to the water and agricultural decision-making agencies. 

 
Figure 6: Operational M-DSSAT system from the, crop yields obtained from the integrated RHEAS 
and M-DSSAT framework: A) Maize yields from Kenya and Tanzania; and B) Rice yields from 
Thailand.
 
Table 1: NASA products used in the RHEAS and M-DSSAT.  

 
A study was conducted to evaluate the 
performance of the RHEAS and M-DSSAT 
framework for the rice producing states of 
India. The results are shown in the following 
Figs 7 - 10. The study areas are among the 
major rice producing states of India. The rice 
cultivation is mostly rainfed and depends on 
onset, duration and intensity of monsoon. 
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Figure 7: Study area in the eastern part of 
India that comprises three states. CG - 
Chhattisgarh, OD  Odisha, and JH  
Jharkhand. 
 
 
 
 

 
Nowcast simulation where done for 17 years (2001  2017). Figure 8 illustrates two distinct scenarios. 
2012 a below normal monsoon and 2017 an average monsoon year. The RHEAS model clearly 
captures the impact of below average monsoon in 2012. The drought indicators from 2012 show higher 
severity (in Jul and Oct), low SPI ( 3-monthly) and low SMDI. The outputs from RHEAS were used 
as inputs to M-DSSAT. Figure 9 highlights the impact of the drought in terms of rice yields in most of 
the districts of the three states (CG, OD and JH). The correlation between the drought indicators and 
the rice yields is significant. 

 
 
 
Figure 8: Outputs (water 
stress and drought 
indicators) from RHEAS. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 9: Rice yields 
for years 2012 and 
2017 for the three states 
(CG, OD, and JH). 
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Actual rice yields and the simulated yields from the integrated framework are compared in Figure 10. 
The results demonstrate significant skills of the RHEAS and the M-DSSAT models. Models (VIC and 
M-DSSAT) calibration will further improve the outputs from the integrated system. The comparison 
demonstrate that the RHEAS and M-DSSAT system capture in the interannual variability for all the 
three states. The observed root-mean-square-difference between the simulated and observed is also 
very low ~300 kg/Ha with very high correlation. 

 
Figure 10: Comparison of actual rice yields and RHEAS and M-DSSAT output yields for three 
states for year 2006 to year 2015. 
 
The output products from RHEAS and M-DSSAT system (Fig. 2) level includes a large range of 
hydrologic variables, indicators derived from the core hydrologic variables, and agricultural variables 
(a list of data products is illustrated in Table 2). Variables that are related directly to water stress are 
given in absolute values as well as anomalies; these include soil moisture, temperature, and 
precipitation (as shown in Fig. 11). These are also used to construct common drought indicators such 
as the Standardized Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), and the 
Surface Water Supply Index (SWSI) (see Table 2). Additionally, the fundamental drought 
characteristics of onset, duration, recovery, and severity are produced directly from RHEAS and M-
DSSAT system. Severity (e.g., mild, moderate, severe, extreme) is spatially relative and time varying. 
Agricultural outputs include estimates of yield, productivity and crop health. Incorporating 
socioeconomic data to quantify and improve understanding of drought impacts to populations in the 
Indian rice producing states is of critical importance. The Crop-Drought Vulnerability Index (CDVI), 
for example, represents the sensitivity of crop productivity to the magnitude of a drought, which also 
characterizes the resilience of a region in terms of agricultural production [15]. All data products are 
in GIS-ready formats as GeoTiffs, Shapefiles, and Rasters to facilitate seamless incorporation into 
existing GIS-enabled web-based or desktop-based toolkits. We will work with our partners to 
determine the best methods for visualizing and delivering the data products for effective decision-
making. RHEAS and M-DSSAT system has all the necessary variables to generate new customized 

products that will be developed based on the 
user needs and requirements to optimally 
guide decision-makers and help formulate 
policies during exigencies. 
 
Table 2: Suite of data products from the 
RHEAS and M-DSSAT system generated 
within the integrated framework. Products 
can be extended and customized as per 
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Figure 11: An example of 
data product from the 
RHEAS and M-DSSAT 
system ready for 
implementation and 
operation. The results are for 
15th June, 2015 from the 
simulation that used the 
NCEP forcings and CHIRPS 
precipitation data for five 
years (2011 to 2015). 
 

 
 
Conclusions:  
The coupled RHEAS and M-DSSAT system will be a robust capability for the India and will eliminate 
the current deficiencies by incorporating: i) advanced remote sensing data and flexibility to choose 
specific remote sensing data or make an ensemble of remote sensing data as inputs; ii) provide tools to 
monitor and forecast most of the land surface hydrologic variables, and potential for computing 
different drought indices (e.g., SPI, SMDI, PDSI, and SWI); iii) capture variability in the hydrologic 
and crop modeling using ensemble mode of coupled RHEAS and M-DSSAT system; iv) enable tools 
for skillful seasonal (1 to 3 months) forecast of crop yields with uncertainty bounds based on global 
short-term and long-term seasonal climate forecast; v) extend capability to run the physically-based 
models on weekly basis to regularly monitor and update the status of drought and the future crop yields; 
and vi) impart capability to run decadal scale simulations using different evolving climate scenarios to 
understand water use/stress/demand and crop yields trend based on different evolving climate 
scenarios. The RHEAS and M-DSSAT system will also equip our decision making agencies with the 
integrated framework to run various scenarios in advance to assess the drought and water stress 
conditions and crop yields when changing the variables and parameters pertaining to planting dates, 
fertilizer applications, irrigation scheduling, and experimentation of new drought resistant cultivars 
(seed types) using the projected seasonal climate forecast.  
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